170 lines
4.8 KiB
Rust
170 lines
4.8 KiB
Rust
use itertools::Itertools;
|
|
use std::collections::HashMap;
|
|
|
|
use kairo_common::{
|
|
influxdb_models::{BeaconMeasure, KnownPosition},
|
|
Antenna, Point, MAC,
|
|
};
|
|
struct KnownDistance {
|
|
point: Point,
|
|
dist: f64,
|
|
}
|
|
|
|
pub async fn solve_for(device_id: MAC) -> Result<Point, ()> {
|
|
let antennas = anntennas_hashmap();
|
|
|
|
let measure = BeaconMeasure::get_for(device_id.as_str()).await.unwrap();
|
|
|
|
let known_distance = measure
|
|
.iter()
|
|
.filter_map(|m| {
|
|
if let Some(a) = antennas.get(&m.beacon_id) {
|
|
let kd = KnownDistance {
|
|
point: a.coord,
|
|
dist: a.get_distance_with_W(m.rssi),
|
|
};
|
|
Some(kd)
|
|
} else {
|
|
None
|
|
}
|
|
})
|
|
.collect::<Vec<KnownDistance>>();
|
|
|
|
let mut posible_positions = known_distance
|
|
.iter()
|
|
.permutations(3)
|
|
.filter_map(|per| trilat(per[0], per[1], per[2]))
|
|
.collect::<Vec<KnownDistance>>();
|
|
|
|
print!("Old len(): {} \t", posible_positions.len());
|
|
|
|
if let Some(last_position) = KnownPosition::get_last_for(device_id.as_str(), 2)
|
|
.await
|
|
.unwrap()
|
|
{
|
|
let last_position = Point::new(last_position.x, last_position.y);
|
|
posible_positions.retain(|p| last_position.distance_to(&p.point) < 3.0);
|
|
}
|
|
println!("New len(): {}", posible_positions.len());
|
|
|
|
let mut pos = Point::new(0.0, 0.0);
|
|
let mut divisor = 0.0;
|
|
for p in posible_positions.iter() {
|
|
pos.x += p.point.x / p.dist;
|
|
pos.y += p.point.y / p.dist;
|
|
divisor += 1.0 / p.dist;
|
|
}
|
|
|
|
pos /= divisor;
|
|
|
|
// println!("Pos: {}", pos);
|
|
let _r = KnownPosition::new(pos).write_for(device_id.as_str()).await;
|
|
|
|
Ok(pos)
|
|
}
|
|
|
|
fn trilat(a: &KnownDistance, b: &KnownDistance, c: &KnownDistance) -> Option<KnownDistance> {
|
|
#![allow(non_snake_case)]
|
|
|
|
let points = vec![a.point, b.point, c.point];
|
|
for &p in points.iter() {
|
|
if !p.is_valid() {
|
|
return None;
|
|
}
|
|
}
|
|
|
|
// We have two triangles that share a side,
|
|
// Da and Db are both a hypotenuse,
|
|
// h is the shared side
|
|
// D is the lineal sum of both coaxial sides.
|
|
// P
|
|
// /|\
|
|
// / | \
|
|
// Da/ |h \Db
|
|
// / | \
|
|
// / d1 | d2 \
|
|
// *-----------*
|
|
// A B => D = BA
|
|
|
|
let D = (b.point - a.point).module();
|
|
|
|
let d1 = (D.powi(2) + a.dist.powi(2) - b.dist.powi(2)) / (2.0 * D);
|
|
let h = f64::sqrt(a.dist.powi(2) - d1.powi(2));
|
|
if h.is_nan() {
|
|
return None;
|
|
}
|
|
|
|
// With points A and B, we can find the Position P, but we the fact is that there are
|
|
// two posible solutions, we build a rhombus with both posible P:
|
|
let D_ver = (b.point - a.point).as_versor().unwrap();
|
|
|
|
let mut upper = D_ver * a.dist;
|
|
let mut downer = D_ver * a.dist;
|
|
|
|
// we need to rotate that direction by alpha and -alpha
|
|
let alpha = f64::tan(h / d1);
|
|
upper.rotate_by(alpha);
|
|
downer.rotate_by(-alpha);
|
|
|
|
// Now we have two vectors with |Da| that point from A where the two posible positions are
|
|
let P = [a.point + upper, a.point + downer];
|
|
|
|
//Now we need to see which P[0] or P[1] is at distance Dc from pointC.
|
|
//But since all numbers we got (Da,Db and Dc) cointain a lot of error and noise
|
|
// we know that they won't be the same number so we need to pick the point that makes the distance to pointC the closest to Dc
|
|
|
|
let dist_to_C = [P[0].distance_to(&c.point), P[1].distance_to(&c.point)];
|
|
let error = [
|
|
f64::abs(dist_to_C[0] - c.dist),
|
|
f64::abs(dist_to_C[1] - c.dist),
|
|
];
|
|
|
|
if error[0] < error[1] {
|
|
Some(KnownDistance {
|
|
point: P[0],
|
|
dist: error[0],
|
|
})
|
|
} else {
|
|
Some(KnownDistance {
|
|
point: P[1],
|
|
dist: error[1],
|
|
})
|
|
}
|
|
}
|
|
|
|
fn anntennas_hashmap() -> HashMap<MAC, Antenna> {
|
|
let data = vec![
|
|
Antenna::new("e6:ad:0b:2e:d7:11", 30.0, Point::new(15.0, 15.0)),
|
|
Antenna::new("c2:b5:f5:cc:e6:88", 30.0, Point::new(15.0, -15.0)),
|
|
Antenna::new("e6:2e:e6:88:f5:cc", 30.0, Point::new(-15.0, 15.0)),
|
|
Antenna::new("c2:ad:0b:b5:11:d7", 30.0, Point::new(-15.0, -15.0)),
|
|
];
|
|
let mut map: HashMap<MAC, Antenna> = HashMap::new();
|
|
for a in data.iter() {
|
|
map.insert(a.id, a.clone());
|
|
}
|
|
map
|
|
}
|
|
|
|
#[test]
|
|
fn test_trilat() {
|
|
let a = KnownDistance {
|
|
dist: 6.3,
|
|
point: Point::new(0.0, 0.0),
|
|
};
|
|
let b = KnownDistance {
|
|
dist: 3.1,
|
|
point: Point::new(5.0, 6.5),
|
|
};
|
|
let c = KnownDistance {
|
|
dist: 5.5,
|
|
point: Point::new(9.0, 0.0),
|
|
};
|
|
|
|
let pos = trilat(&a, &b, &c).unwrap();
|
|
let expected = Point::new(5.0, 3.5);
|
|
|
|
assert!(f64::abs(pos.point.x - expected.x) < 0.5);
|
|
assert!(f64::abs(pos.point.y - expected.y) < 0.5);
|
|
}
|